

Grant Agreement No.: 689817

Project acronym: INNOQUA

Project title: Innovative Ecological on-site Sanitation System for Water and Resource Saving

Innovation Action

Topic: Water-1b-2015: Water Innovation: Boosting its value for Europe – Demonstration/pilot activities

Starting date of project: 1st of June 2016

Duration: 48 months

D5.1 – Demosite installation

Organisation name of lead contractor for this deliverable: NBK			
	Due Date	01.11.2018	
Version	Submission	01.12.2019	
	Date		
	Authors	Nobatek	

Dissemi	nation Level	
PU	Public	×
СО	Confidential, only for members of the consortium (including the Commission Services)	

Contents

Docum	ent history	7
1 Int	roduction	8
1.1	Work Package 5 Objectives	8
1.2	The Role of Deliverable D5.1	8
1.3	Relationship with other Activities in the Project	9
2 De	monstration strategy	9
2.1	Presentation of the demo-site strategy	9
2.2	Approach for the development of D.5.1.	10
2.3	Table and map presenting the demosite	13
2.4	Demosite details	15
3 Pr	esentation of the demosite	16
3.1	Ireland – NUIG	16
3.2	Italy – DE5	19
3.3	France – Nobatek	22
3.4	Scotland - Scottish Water	25
3.5	Turkey – EKO	28
3.6	Romania – ECOIND	31
3.7	Ecuador – GYA	34
3.8	Peru – UCSM	37
3.9	Tanzania – BORDA	40
3.10	India – BORDA	43
3.11	France – Lombritek	46
4 Cc	nclusion	49

Table of tables

Table 1: The different demosite by location and responsible	13
Table 2: Details information for the different demosites	15
Table 3: Key parameters of the NUIG demosite	16
Table 4: Timeline of the NUIG demosite preparatory and installation works:	16
Table 5: Description of the NUIG demosite:	17
Table 6: Influent quality and treatment target of the NUIG demosite:	17
Table 7: Key parameters of the DE5 demosite	19
Table 8: Timeline of the DE5 demosite preparatory and installation works:	19
Table 9: Description of the DE5 demosite	20
Table 10: Influent quality and treatment target of the DE5 demosite:	21
Table 11: Key parameters of the NBK demosite	22
Table 12: Timeline of the NBK demosite preparatory and installation works:	22
Table 13: Description of NBK demosite:	22
Table 14: Influent quality and treatment target of the NBK demosite:	23
Table 15: Key parameters of the SW demosite	25
Table 16: Timeline of the SW demosite preparatory and installation works:	25
Table 17: Description of the SW demosite	25
Table 18: Influent quality and treatment target of the SW demosite:	26
Table 19: Key parameters of the EKO demosite	28
Table 20: Timeline of the EKO demosite preparatory and installation works:	28
Table 21: Description of the EKO demosite:	28
Table 22: Influent quality and treatment target of the EKO demosite:	29
Table 23: Key parameters of the ECOIND demosite	31
Table 24: Timeline of the EKO demosite preparatory and installation works:	31
Table 25: Description of the ECOIND demosite:	32
Table 26: Influent quality and treatment target of the ECOIND demosite:	33
Table 27: Key parameters of the GYA demosite	34
Table 28: Timeline of the GYA demosite preparatory and installation works:	34
Table 29: Description of the GYA demosite:	35
Table 30: Influent quality and treatment target of the GYA demosite:	35
Table 31: Key parameters of the UCSM demosite	37
Table 32: Timeline of the UCSM demosite preparatory and installation works:	37
Table 33: Description of the UCSM demosite:	37
Table 34: Influent quality and treatment target of the UCSM demosite:	38
Table 35: Key parameters of the BORDA demosite	40
Table 36: Timeline of the BORDA demosite preparatory and installation works:	40
Table 37: Description of the BORDA demosite:	41
Table 38: Influent quality and treatment target of the BORDA demosite:	42
Table 39: Key parameters of the BORDA demosite	43
Table 40: Timeline of the BORDA demosite preparatory and installation works:	43
Table 41: Description of the BORDA demosite:	44
	0/40

Table 42: Influent quality and treatment target of the BORDA demosite:	45
Table 43: Key parameters of the LBT demosite	46
Table 44: Timeline of the LBT demosite preparatory and installation works:	46
Table 45: Description of the LBT demosite:	47
Table 46: Sludge quality and treatment target of the LBT demosite:	47

Table of figures

Figure 1: Map of the pilot sites and demonstration sites location	14
Figure 2 Integration of the NUIG demosite	16
Figure 3 Integration of the DE5 demosite	19
Figure 4: Integration of the NBK demosite	22
Figure 5 Integration of the SW demosite	25
Figure 6: Integration of the EKO demosite	28
Figure 7: Integration of the ECOIND demosite	31
Figure 8: Integration of the GYA demosite	34
Figure 9: Integration of the UCSM demosite	37
Figure 10: Integration of the BORDA demosite	40
Figure 11: Integration of the BORDA demosite	43

Table of photos

Photo 2: The Innoqua system on the NUIG's demosite. 18 Photo 5 Context view of the demosite 20 Photo 6 Innoqua system on the DE5 demosite 21 Photo 7: Context view of the demosite, the Nobatek's headquaters 23 Photo 8 Innoqua system on NBK demosite 24 Photo 9: Context view of the demosite, aerial view of the housing 26 Photo 10: The Innoqua system on SW demosite 27 Photo 11: Context view of the demosite, view of the housing 29 Photo 12: The Innoqua system on EKO demosite 30 Photo 13: Context view of the demosite, the touristic building in winter and summer 32 Photo 14: The Innoqua system on RMC + ECOIND demosite 33 Photo 15: Context view of the demosite, the multifamily house 35 Photo 16: The Innoqua demosite on GYA + UCU demosite 36 Photo 17: Context view of the demosite, one of the five household 41 Photo 20: The Innoqua system on BORDA - Tanzania demosite 42 Photo 21: Context view of the demosite, the community 44 Photo 22: Lumbricomposting unit during one of our demosite visit 47	Photo 1: Context view of the demosite	17
Photo 5 Context view of the demosite 20 Photo 6 Innoqua system on the DE5 demosite 21 Photo 7: Context view of the demosite, the Nobatek's headquaters 23 Photo 8 Innoqua system on NBK demosite 24 Photo 9: Context view of the demosite, aerial view of the housing 26 Photo 10: The Innoqua system on SW demosite 27 Photo 11: Context view of the demosite, view of the housing 29 Photo 12: The Innoqua system on EKO demosite 30 Photo 13: Context view of the demosite, the touristic building in winter and summer 32 Photo 14: The Innoqua system on RMC + ECOIND demosite 33 Photo 15: Context view of the demosite, the multifamily house 35 Photo 16: The Innoqua demosite on GYA + UCU demosite 36 Photo 17: Context view of the demosite, one of the five household 41 Photo 20: The Innoqua system on BORDA - Tanzania demosite 42 Photo 21: Context view of the demosite, the community 44 Photo 22: Lumbricomposting unit during one of our demosite visit 47	Photo 2: The Innoqua system on the NUIG's demosite	18
Photo 6 Innoqua system on the DE5 demosite 21 Photo 7: Context view of the demosite, the Nobatek's headquaters 23 Photo 8 Innoqua system on NBK demosite 24 Photo 9: Context view of the demosite, aerial view of the housing 26 Photo 10: The Innoqua system on SW demosite 27 Photo 11: Context view of the demosite, view of the housing 29 Photo 12: The Innoqua system on EKO demosite 30 Photo 13: Context view of the demosite, the touristic building in winter and summer 32 Photo 14: The Innoqua system on RMC + ECOIND demosite 33 Photo 15: Context view of the demosite, the multifamily house 35 Photo 16: The Innoqua demosite on GYA + UCU demosite 36 Photo 17: Context view of the demosite, one of the five household 41 Photo 20: The Innoqua system on BORDA - Tanzania demosite 42 Photo 21: Context view of the demosite, the community. 44 Photo 22: The Innoqua system on BORDA - India demosite 47 Photo 22: Lumbricomposting unit during one of our demosite visit 48	Photo 5 Context view of the demosite	20
Photo 7: Context view of the demosite, the Nobatek's headquaters 23 Photo 8 Innoqua system on NBK demosite 24 Photo 9: Context view of the demosite, aerial view of the housing 26 Photo 10: The Innoqua system on SW demosite 27 Photo 11: Context view of the demosite, view of the housing 29 Photo 12: The Innoqua system on EKO demosite 30 Photo 13: Context view of the demosite, the touristic building in winter and summer. 32 Photo 14: The Innoqua system on RMC + ECOIND demosite 33 Photo 15: Context view of the demosite, the multifamily house 35 Photo 16: The Innoqua demosite on GYA + UCU demosite 36 Photo 17: Context view of the demosite, one of the five household 41 Photo 19: Context view of the demosite, one of the five household 41 Photo 20: The Innoqua system on BORDA - Tanzania demosite 42 Photo 21: Context view of the demosite, the community. 44 Photo 22: The Innoqua system on BORDA - India demosite 47 Photo 22: Lumbricomposting unit during one of our demosite visit 48	Photo 6 Innoqua system on the DE5 demosite	21
Photo 8 Innoqua system on NBK demosite 24 Photo 9: Context view of the demosite, aerial view of the housing 26 Photo 10: The Innoqua system on SW demosite 27 Photo 11: Context view of the demosite, view of the housing 29 Photo 12: The Innoqua system on EKO demosite 30 Photo 13: Context view of the demosite, the touristic building in winter and summer 32 Photo 14: The Innoqua system on RMC + ECOIND demosite 33 Photo 15: Context view of the demosite, the multifamily house 35 Photo 16: The Innoqua demosite on GYA + UCU demosite 36 Photo 17 Context view of the demosite, the university entrance 38 Photo 18: The Innoqua system on UCSM demosite 39 Photo 20: The Innoqua system on BORDA - Tanzania demosite 42 Photo 21: Context view of the demosite, the community 44 Photo 22: The Innoqua system on BORDA - India demosite 45 Photo 21: Context view of the demosite 47 Photo 22: Lumbricomposting unit during one of our demosite visit 48	Photo 7: Context view of the demosite, the Nobatek's headquaters	23
Photo 9: Context view of the demosite, aerial view of the housing. 26 Photo 10: The Innoqua system on SW demosite 27 Photo 11: Context view of the demosite, view of the housing 29 Photo 12: The Innoqua system on EKO demosite 30 Photo 13: Context view of the demosite, the touristic building in winter and summer. 32 Photo 14: The Innoqua system on RMC + ECOIND demosite 33 Photo 15: Context view of the demosite, the multifamily house 35 Photo 16: The Innoqua demosite on GYA + UCU demosite 36 Photo 17 Context view of the demosite, the university entrance 38 Photo 18: The Innoqua system on UCSM demosite 39 Photo 19: Context view of the demosite, one of the five household 41 Photo 20: The Innoqua system on BORDA - Tanzania demosite 42 Photo 21: Context view of the demosite, the community. 44 Photo 22: Lumbricomposting unit during one of our demosite visit 47	Photo 8 Innoqua system on NBK demosite	24
Photo 10: The Innoqua system on SW demosite 27 Photo 11: Context view of the demosite, view of the housing 29 Photo 12: The Innoqua system on EKO demosite 30 Photo 13: Context view of the demosite, the touristic building in winter and summer 32 Photo 14: The Innoqua system on RMC + ECOIND demosite 33 Photo 15: Context view of the demosite, the multifamily house 35 Photo 16: The Innoqua demosite on GYA + UCU demosite 36 Photo 17 Context view of the demosite, the university entrance 38 Photo 18: The Innoqua system on UCSM demosite 39 Photo 19: Context view of the demosite, one of the five household 41 Photo 20: The Innoqua system on BORDA - Tanzania demosite 42 Photo 21: Context view of the demosite, the community. 44 Photo 22: The Innoqua system on BORDA- India demosite 45 Photo 21: Context view of the demosite 47 Photo 22: Lumbricomposting unit during one of our demosite visit 48	Photo 9: Context view of the demosite, aerial view of the housing	26
Photo 11: Context view of the demosite, view of the housing 29 Photo 12: The Innoqua system on EKO demosite 30 Photo 13: Context view of the demosite, the touristic building in winter and summer. 32 Photo 14: The Innoqua system on RMC + ECOIND demosite 33 Photo 15: Context view of the demosite, the multifamily house 35 Photo 16: The Innoqua demosite on GYA + UCU demosite 36 Photo 17 Context view of the demosite, the university entrance 38 Photo 18: The Innoqua system on UCSM demosite 39 Photo 19: Context view of the demosite, one of the five household 41 Photo 20: The Innoqua system on BORDA - Tanzania demosite 42 Photo 21: Context view of the demosite, the community 44 Photo 22: The Innoqua system on BORDA - India demosite 45 Photo 21: Context view of the demosite 47 Photo 22: Lumbricomposting unit during one of our demosite visit 48	Photo 10: The Innoqua system on SW demosite	27
Photo 12: The Innoqua system on EKO demosite	Photo 11: Context view of the demosite, view of the housing	29
Photo 13: Context view of the demosite, the touristic building in winter and summer	Photo 12: The Innoqua system on EKO demosite	30
Photo 14: The Innoqua system on RMC + ECOIND demosite33Photo 15: Context view of the demosite, the multifamily house35Photo 16: The Innoqua demosite on GYA + UCU demosite36Photo 17 Context view of the demosite, the university entrance38Photo 18: The Innoqua system on UCSM demosite39Photo 19: Context view of the demosite, one of the five household41Photo 20: The Innoqua system on BORDA - Tanzania demosite42Photo 21: Context view of the demosite, the community44Photo 22: The Innoqua system on BORDA- India demosite45Photo 21: Context view of the demosite47Photo 22: Lumbricomposting unit during one of our demosite visit48	Photo 13: Context view of the demosite, the touristic building in winter and summer	32
Photo 15: Context view of the demosite, the multifamily house	Photo 14: The Innoqua system on RMC + ECOIND demosite	33
Photo 16: The Innoqua demosite on GYA + UCU demosite	Photo 15: Context view of the demosite, the multifamily house	35
Photo 17 Context view of the demosite, the university entrance	Photo 16: The Innoqua demosite on GYA + UCU demosite	36
Photo 18: The Innoqua system on UCSM demosite	Photo 17 Context view of the demosite, the university entrance	38
Photo 19: Context view of the demosite, one of the five household	Photo 18: The Innoqua system on UCSM demosite	39
Photo 20: The Innoqua system on BORDA - Tanzania demosite	Photo 19: Context view of the demosite, one of the five household	41
Photo 21: Context view of the demosite, the community	Photo 20: The Innoqua system on BORDA - Tanzania demosite	42
Photo 22 The Innoqua system on BORDA- India demosite	Photo 21: Context view of the demosite, the community	44
Photo 21: Context view of the demosite	Photo 22 The Innoqua system on BORDA- India demosite	45
Photo 22: Lumbricomposting unit during one of our demosite visit	Photo 21: Context view of the demosite	47
	Photo 22: Lumbricomposting unit during one of our demosite visit	48

Document history

History				
Version	Date	Author	Comment	
1	27.09.2019	Alexandre SCHAAL (NBK)	First draft	
2	28.10.2019	Costel Bumbac (Ecoind)	First draft update and comments	
3	29.10.2019	Alexandre SCHAAL (NBK)	Version 1 of the document	
4	4.11.2019	Costel Bumbac (Ecoind)	First version update	
5	12.11.2019	Alexandre SCHAAL (NBK)	Final version submission	
6	18.11.2019	Costel Bumbac (Ecoind), Louise HANON & Eoghan CLIFFORD (NUIG)	Final version approval	
7				
6				
7				

1 Introduction

INNOQUA project aims to develop and demonstrate towards commercialization an innovative, modular and sustainable wastewater treatment system that integrates individual low cost, sustainable and biologically based technologies.

WP5 "Scenario implementation in demonstration sites" is a key step in the exploitation of the INNOQUA system as it includes the design, installation, operation and monitoring of different demonstrator under real environmental and operational conditions in different locations both in Europe (Ireland, France, Italy, Scotland, Turkey, Romania) and further afield: South America (Ecuador, Peru), Asia (India) and Africa (Tanzania).

The INNOQUA Project started in June 2016 (M01) and this deliverable D.5.1. describes the installed demo-sites.

1.1 Work Package 5 Objectives

The main objectives of WP5 as listed in the Grant Agreement are as follows:

- Develop full scale demonstration prototypes featuring for each of the target market a scenario identified, putting real scale/real-operation conditions,
- Design and deploy ICT systems and relevant remote sensing capability to each of the demonstration units in the pilot sites countries,
- Fully test performance of the aforementioned prototypes to include treatment performance, energy analysis, operational and maintenance analysis and long-term sustainability,
- Engagement with stakeholders and end-users to refine technology design, operation and maintenance,
- Host open days for stakeholders to view the technologies in action on-site,
- Document and synthesize all results. Technology guideline documents and specifications and brief technology fiches will be produced to ease the way for commercial exploitation.

1.2 The Role of Deliverable D5.1

This deliverable is a detailed list of all demosites installed within the INNOQUA project. This deliverable aims to give technical overview on each of the demosites with the information regarding: the integration of technologies, the particular design characteristics, the volume and type of influent wastewater, the targeted treatment/reuse standard, the geographical details and the contact information.

All monitoring data are not part of this deliverable, they will be presented in the deliverable 5.2.

1.3 Relationship with other Activities in the Project

The prototype testing phase of the project (WP4) set the basis for designing and installing of the real environmental conditions demo-sites (WP5) and provided technical recommendations on operation, monitoring and control of the full-scale demo-sites

By gathering most of the technical information about all demosites, this deliverable will be used as a reference for all other deliverables of WP5.

This WP5 will allow to assess the performance, in terms of treatment and energy requirements, but also correct the issues and provide the technical and the operational feedback including the installation requirements, the maintenance and the stakeholder's acceptance to better feed the activities of WP6 (results exploitation).

2 Demonstration strategy

2.1 Presentation of the demo-site strategy

Based on the research data gathered during the prototyping phase (WP4) from the pilot scale INNOQUA systems installed in Ireland (NUIG) and Spain (UDG), within WP5, 11 demo sites have been installed across 10 countries (France, Ireland, Italy, Romania, Scotland, Turkey, Ecuador, Peru, India and Tanzania) to demonstrate in real environmental and operational conditions the long-term viability of a modular and a locally sustainable solutions.

The WP4 provided an excellent understanding of the nature-based solutions and offered time to test the limit and to improve both the efficiency and the design of the technology. A similar deliverable which gathers the technical details about the pilot site is available under D4.2. Also, the results from this WP4 phase are presented in the updated version of the D4.3.

The modules include lumbrifilter (LF), daphnia filter (DF), bio-solar purification (BSP) and UV system (UV). They are all controlled and monitored by a monitoring and control unit (MCU), the fifth technology developed within the INNOQUA project. The pilot sites provide a robust platform for scientific research and act as a focus for local training and dissemination activities.

It is important to note that the French demonstration site leaded by Lombritek is not implementing the wastewater treatment solution itself. Indeed, this demonstration has implemented the Lumbricomposting unit. The methodology allows to close the loop of the circularity of the water treatment. The Lumbricomposting unit installed in France make the treatment and valorisation of the sludge from the aquaculture farm possible. The site aims to prove the replicability of the methodology to address the ultimate water treatment phase which is the sludge valorisation into a certified and marketable product.

Due to its modular configuration, the INNOQUA system can address multiple aspects of wastewater treatment and water re-use in water stressed communities, rapidly expanding cities and industries –both in developed and developing countries. The decentralised approach helps to reduce pressure on inadequate wastewater networks while reducing the water and energy demands of typical centralised wastewater treatments – supporting sustainable development.

Different integration of the INNOQUA technologies have been chosen depending on influent type and quality, treatment target (discharge and/or reuse quality standards) considering the climatic condition and space availability. In India and Peru, where the climatic conditions and the available space allow it, all the technologies have been installed working as two parallel integration (LF+DF+UV+MCU and LF+BSP+MCU) to assess best the long term suitability and sustainability of wastewater treatment with local reuse of the effluent as irrigation water.

All the unit are being monitored by the MCU for a remote accessible on-line monitoring. Different parameters important to follow the biological state of the system are being monitored: Dissolved Oxygen, Temperature and pH.

The efficiency of the demonstration sites will be presented and analysed in the upcoming D5.2

2.2 Approach for the development of D.5.1.

This WP has been equally impacted by the withdrawal of the industrial partner WTE. Thus, all demosites suffered a six-months delay in the reception of the tanks. As WP5 implementation was dependent of WP4 results, this delay, previously recorded within the WP4 couldn't be reduced in any significant way despite the strong involvement of the new industrial partner - REDI.

Being aware of the risk of delay, different measures have been adopted in time to tackle with this delay and allow a smooth installation:

A detailed gantt chart of WP5 activities was first developed in April 2018 and continuously updated as the work progressed. The detailed gantt chart was assessing the timeline of activities with a focus on installation:

- Demo-site design requirements and technology requirements:
 - o Validate site and technology integration,
 - Lumbric breeding instructions,
 - o Daphnia breeding instructions,
 - List of recommended fourniture/equipments (pumps/nozzle/septic tank, equalisation basins - depending on site requirements) necessary to install the INNOQUA system on demosite.
- On-site preparatory works:
 - Demosite managers needs their design done (technical project/plumbing/electrical works design),
 - o Authorization (import/construction/installation) if needed,
 - Installing plumbery and electricity network,
 - Procurement of tank accessories (pumps, nozzles, etc) according to specific,technical project and list recommended,
 - \circ $\;$ Site ready to receive tanks and to install the INNOQUA system,
 - Strat lumbric&/daphnia breeding,
 - o Lumbrics/daphnia breeding in progress,
 - Lumbrics/daphnia population ready for inoculation.

- Manufacturing transport and installation:
 - Manufacturing tanks,
 - Tanks transportation,
 - Provide Onsite and Online monitoring component needed,
 - Demosite installation (tank positioning, connections: water works/electrical/pumps/MCU),
 - Demosite operational,
 - Demo-site inoculation and start-up.

Actions:

- In May 2018, the technology providers developed earthworms and daphnia breading instructions which were disseminated to all demo-site managers.
- The detailed list of required materials for the installation of the demosites and installation guidelines for each of the technologies were available in July 2018,
- During August 2018, specific meetings with each demosite manager were organised to validate the initial technical/drawing of each demosite,
- Communication between the consortium partners of WP4 and WP5 has been increased aiming to build communication bridges between this two important WP. A strong involvement of the different partners, especially of the industrial partner – REDI, was required to better understand the tank design made for the prototype (built by Inbrooll for the WP4 based on the design of the INNOQUA consortium). During this period, from August 2018 to November 2018, regular meetings and intense email exchanges were required to validate all demo-sites (technical design, tank sizes),
- A first validation meeting was on-site at the manufacturing headquarters of REDI the industrial partner, were the first manufactured tanks (LF and DF) based on the approved size and design of Indian demo-site were validated by the consortium,
- All members involved in the implementation of WP5 participates at the visio-meeting organised every two weeks since the PM6 in Bangalore in January 2019. These meetings were designed to gather crucial information on the status of implementation (design validation, manufacturing, transport, installation, breading/purchase of earthworms/daphnia, authorization, installation, start-up, inoculation, operation, monitoring, etc) on all demo-sites, plan the future works and share lessons learnt on all implementation steps between different demo-site managers,
- To increase communication and accelerate the reply rate between different partners involved in the implementation, for each demosite, specific WhatsApp groups have been created including: the WP leader, the Project manager, the Technical Manager, the demosite responsible, the demosite manager, the industrial partner, and also all the responsible of the technologies installed on the demosite. It allowed and allows a direct communication and prompt answer for crucial issues,
- Extraordinary visio-meeting are also organised by the demosite manager and WP leader/demosite responsible as soon as a potential issue is identified or to assess and control the progress of work.

Once with the bankruptcy of Heliopure technology, the BSP modules within the demo-sites of India and Peru has been delayed for extra 6 months, time required for NBK and ECOIND taking over the responsibilities of BSP further development through lab scale experiments and innovative design towards a full scale demonstration BSP module of the INNOQUA system (which have been installed successfully in September 2019 (India and Peru) by NBK and ECOIND.

2.3 Table and map presenting the demosite

Below, the list of the different partners responsible of the demosite and the country where they are located and a map to represent where all the demosite are situated in the different countries.

PARTNERS RESPONSIBLE	COUNTRY	CITY	CONTACT	
NUIG	Ireland	Craughwell	eoghan.clifford@nuigalway.ie	
DE5	Italia	Vasto	pietro.decinque@de5.it	
NBK	France	Anglet	jbdussaussois@nobatek.inef4.com	
SW	Scotland	Littlemill	Anna.Baran@scottishwater.co.uk	
EKO	Turkley	Sinop	serkan.naneci@ekodenge.com	
ECOIND, RMC	Romania	Suceava	costel.bumbac@incdecoind.ro	
GYA	Ecuador	Quito	nsalmon@yes-innovation.com	
BORDA	India	Bangalore	schellenberg@borda.org	
BORDA	Tanzania	Dar es salam	herrera@borda.org	
UCSM	Peru	Arequipa	joshelyn.pz@gmail.com	
LBT	France	La Canourgue	p.soto@lombritek.com	

Table 1: The different demosite by location and responsible

On the map, Figure 1, are represented the locations of different demo sites.

The INNOQUA systems developed at prototype level within WP 4 at Girona University (UDG) Spain and Galway National University (NUIG) Ireland have been kept onsite and are continuously monitored to test more parameters and bring more data for the design of the commercial version of the system.

Even though the previous plan was to recycle the protypes as showcases in India and Ecuador, the experience of demo-site implementation in terms of tanks transport and customs both in terms of expenses and necessary time, led us to the conclusion that building them on-site is more-suitable. Thus, local sourcing scenarios to build the showcases in Ecuador, India and Tanzania have been investigated and chosen. These showcases are being built with local materials within the budget previously planned for prototype transportation.

Figure 1: Map of the pilot sites and demonstration sites location

2.4 Demosite details

Partners responsible	Technologies integration	Installation Complete (YES/NO)	Date of start- up	Flow (m³/day)	Type of wastewater	Yearly average temperature (°C)
NUIG	Lumbrifilter	Yes	01/06/2019	0.1	Milking parlour washings and animal waste	12
DE5	Lumbrifilter + UV	Yes	10/04/2019	2	Domestic wastewater	14,8
NBK	Lumbrifilter + daphniafilter	Yes	12/04/2019	0.75	Tertiary building wastewater	13,8
EKO	Lumbrifilter + daphniafilter + UV	Yes	15/07/2019	3	Domestic wastewater	8,5
SW	Lumbrifilter + daphniafilter + UV	Yes	01/09/2019	1.5	Domestic wastewater	14
ECO+RMC	Lumbrifilter + daphniafilter	Yes	26/04/2019	2	Domestic wastewater	7,9
UCU + GYA	Lumbrifilter + daphniafilter	Yes	05/08/2019	2	Domestic wastewater	13,9
BORDA	Lumbrifilter + daphniafilter + UV + BSP	Yes	01/06/2019	1.5	Domestic wastewater	14,5
BORDA	Lumbrifilter + daphniafilter + UV	Yes	01/08/2019	1.5	Domestic wastewater	25,9
UCSM	Lumbrifilter + daphniafilter + UV + BSP	Yes	01/09/2019	1	Domestic wastewater	23,6
LBT	Lumbricomposting	Yes	11/08/2019	60 m ³ / year	Waste from fish farming	7,9

Table 2: Details information for the different demosites

3 Presentation of the demosite

3.1 Ireland – NUIG

Table 3: Key pa	ameters of the	NUIG	demosite
-----------------	----------------	------	----------

Design	Source of	Technology	Partner	Dimension of the
capacity	wastewater		responsible	System
0.1 m³/day	Milking parlour washings and animal waste	Lumbrifilter	NUIG	Lumbrifilter tank: 3 m ³

Figure 2: Integration of the NUIG demosite

Toble 4	Timeline of	domonito	nronoroton	and installation	worker
1 aule 4.		uemosile	preparatory	y and installation	I WUINS.

Crt. No.	Action	Details
1.	Specific technical design – Irish demo-site layout	September 2018
2.	Tanks design validation	October 2018
3.	Technical project for construction authorization	December 2018
4.	Tanks manufacturing	January 2019
5.	Tanks delivery	February 2019
6.	Authorization	February 2019
7.	Installation	April 2019
8.	Start-up	May 2019

Table 5: Description of the NUIG demosite:

Altitude	Yearly average temperature °c	Max/min temperature °c	Annual rainfall
50 m	12 °C	+ 18°C / 3°C	1400 mm

The demosite is located in the farm in Craughwell, home to 100 dairy cows, milked twice a day. Around 5,000 litres per day of wastewater goes to the dairy parlour sump, containing animal waste and parlour washings waste.

Photo 1: Context view of the demosite

BENEFICIARIES: The INNOQUA system will treat some of the wastewater produced by parlour washings from the facility, while the rest will be stored in a holding tank then emptied by slurry spreading at specific times and within regulations. Beneficiaries include farms and similar agricultural facilities.

CONFIGURATION: The INNOQUA system consists of a lumbrifilter and primary settlement tanks connected to the dairy farm's milking parlour

Table 6: Influent quality at the NUIG demosite:

Quality Decomptor	Influent quality*	
	mg/L	
TSS	1880	
COD	6133	
Total N	255	
Total P	32.8	
*Average		

**According to Wastewater Discharge (Authorisation) Regulations, 2007 (S.I. No. 684 of 2007) and Environmental Protection Agency (EPA)

SPECIFIC SCIENTIFIC RESEARCH OBJECTIVES: To demonstrate the versatility of the INNOQUA process in treating agricultural wastewater and enable improved management of wastewater at dairy farms.

Photo 2: The Innoqua system on the NUIG's demosite.

LOCATION: Privately owned dairy and cattle farm in Craughwell (31 km from NUI Galway) County Galway Ireland

3.2 Italy – DE5

Table 7: Key parameters of the DE5 demosite

Design capacity	Source of wastewater	Technology	Partner responsible	Dimension of the system
2 m³/day	Domestic	Lumbrifilter + UV	DE5	Lumbrifilter: 2 m ³

Figure 3: Integration of the DE5 demosite

Table 8: Timeline of the DE5 demosite preparatory and installation works:

Crt. No.	Action	Details
1.	Preliminary design of the system	01/07/2017
2.	Construction of the surrounding infrastructures	19/02/2018
3.	Schema update considering comments from technical partners (post meeting	11/09/2018
4.	End of infrastructures construction	30/05/2018
5.	- First analysis (start date - end date)	22/02/2019 - 01/03/2019
6.	UV-lamp arrived at demo site	22/02/2019
7.	REDi tanks arrived at demo site	28/03/2019
8.	MCU arrived at demo site	02/05/2019
9.	-REDI arrives for the first time	03/05/2019
10	 Filing the Lumbrifilter with needed materials and starting to discharge in it 	24/05/2019
11	Inoculation worms and continuing discharging in it	07/06/2019

Table 9: Description of the DE5 demosite

Altitude	Yearly average temperature °c	Max/min temperature °c	Annual rainfall
0 m	14.8 °C	+ 22°C / +8°C	710 mm

This demosite is implemented in the city of Vasto located at the Adriatic coast of Italy in the region Abruzzo which is located in the centre of the Italian peninsula. The population amounts to approximately 42.000 people. The city is the 3rd of the administrative province Chieti regarding the territory extension: 71,35 km².

In terms of sanitation this is an important point because there are 19 village fractions which are not fully seved by the public sewage-network. The site is located close to the sea in a touristic region where the bathing water is monitored to respect the European bathing Directive, especially in terms of microbiological load (*E.coli, Enterococcus*).

Photo 3: Context view of the demosite

BENEFICIARIES: The INNOQUA system treats the wastewater from the Canale House: A single-family house with 4 inhabitants.

Quality	Influent quality	Discharge limits *	Minimum removal*
i arameter		%	
TSS	149±60	200	50
COD	909±11	500	70
BOD5	422±51	250	70
Total N	136±9	15	
Total P	12±1	2	

Table 10: Influent quality and treatment target of the DE5 demosite:

*According to D. Lgs. 152/2006 - L.R 17/2008 Regione Abruzzo

SPECIFIC SCIENTIFIC RESEARCH OBJECTIVES: To assess the potential for the INNOQUA technology to be implemented in really small building with a strong integration work and for a 4 PE system.

Photo 4: Innoqua system on the DE5 demosite

CONFIGURATION: In Italy the INNOQUA system consists of a lumbrifilter installed on the outflow from a septic tank. The system is completed by an UV disinfection system to ensure microbial quality suitable for discharge into coatline seawater.

LOCATION: c.da Canale, 66050 Vasto (CH) Italy

3.3 France – Nobatek

Table 11: Key parameters of the NBK demosite

Design	Source of	Technology	Partner	Dimension of the
capacity	wastewater		responsible	System
0.6 m³/day	Tertiary building Mainly black water.	Lumbrifilter + Daphniafilter	Nobatek	Lumbrifilter: 3 m ³ Daphniafilter: 1 m ³

Figure 4: Integration of the NBK demosite

Table 12: Timeline of the NBK demosite preparatory and installation works:

Crt. No.	Action	Details
1.	Specific technical design and validation with local authorities-	September 2018
2.	Preparatory works	November 2018
3.	Tanks design validation	October 2018
4.	Tanks manufacturing	January 2019
5.	Tanks delivery	28 th of February 2019
6	Installation	March-April 2019
7.	Start-up	April 2019

Table 13: Description of NBK demosite:

Altitude:	Yearly average temperature °c:	Annual temperature range max/min °c	Annual rainfall
30 m	13.8 °C	+ 27°C / -5°C	1200 mm

The demosite is installed in the NOBATEK offices in the city of Anglet. This city is located in the western part of France close to the Spanish boarder. In France, where 70 billion peoples live, 20 % to 30% of the population are using onsite sanitation system. The INNOQUA system treats the wastewater from the headquarters of NOBATEK/INEF4. This office building is home to research and technology organisation built in 2009.

Photo 5: Context view of the demosite, the Nobatek's headquaters

BENEFICIARIES: The building host around 30 employees working on the green building technologies field, programming and energy efficiency and the open innovation management sector.

CONFIGURATION: In France the INNOQUA system consists of a lumbrifilter and a daphniafilter installed outside on a concrete platform. The system is plugged on the wastewater network and after treatment the water goes by gravity to the municipal network.

Table 14: Influent quality and treatment target of the NBK demosite:

Quality Parameter	Influent quality	Discharge limits *
		mg/L
TSS	624±200	35
COD	1382±700	
BOD5	533±200	30
N-NH4 ⁺	183±30	

*According to Arrêté du 7 septembre 2009 SPECIFIC SCIENTIFIC RESEARCH OBJECTIVES: To assess the potential for the INNOQUA technology to be implemented on a tertiary building. This site provides an excellent real-life demonstration in a modern office building with an energy and environmentally aware demographic.

Photo 6: Innoqua system on NBK demosite

LOCATION: 67 rue de Mirambeau Anglet - 64600 France

3.4 Scotland - Scottish Water

Table 15: Key parameters of the SW demosite

Design capacity	Source of wastewater	Technology	Partner responsible	Dimension of the system
1.5m³/day	Domestic	Lumbrifilter + Daphniafilter + UV	Scottish Water	Lumbrifilter: 6 m ³ Daphniafilter: 3 m ³

Figure 5: Integration of the SW demosite

Table 16: Timeline of the SW demosite preparatory and installation works:

Crt. No.	Action	Details
1	Specific technical design -Scotland demo-site	November 2018
1.	layout	
2.	Tanks design validation	October 2018
4.	Tanks manufacturing	January 2019
5.	Tanks delivery	4 th March 2019
6.	Authorization	March 2019
3.	Technical project for construction authorization	June 2019
7.	Construction in workshop and Installation on site.	July - September 2019
8.	Start-up	September 2019

Table 17: Description of the SW demosite

Altitude:	Yearly average temperature °c:	Max/min temperature °c	Annual rainfall
90 m	8.5 °C	+ 14.8°C / +2.9°C	706 mm

This demosite is set in the village of Littlemill. This village is located in the north part of Scotland, in the Highlands. It has a population of approximately 16 people (number can vary in summer), living in approximately 14 households. The entire village of Littlemill is served by wastewater treatment works (WWTW) consisting of Submerged Aerated Filter (SAF).

BENEFICIARIES: The INNOQUA system will treat the wastewater from the Littlemill village.

Photo 7: Context view of the demosite, aerial view of the housing

Quality Parameter	Influent quality	Discharge limits *
		mg/L
TSS	73±34	35
COD	383±53	125
BOD5	185±30	25
N-NH4 ⁺	35±6	25
N-NO ₃ -	0.38±0	
Total N	39±3	

SPECIFIC SCIENTIFIC RESEARCH OBJECTIVES:

To assess the potential for the INNOQUA technology to be implemented at a small-scale domestic site with existing sewer system, and in potentially sever weather conditions.

Photo 8: The Innoqua system on SW demosite

CONFIGURATION: In Scotland the INNOQUA system consists of a lumbrifilter and a daphniafilter installed at a side stream of an existing WWTW SAF (Submerged Aerated Filter).

LOCATION: Littlemill WWTW, Nairn IV12 5QL Scotland

3.5 Turkey – EKO

Table 19: Key parameters of the EKO demosite

Design capacity	Source of	Technology	Partner responsible	Dimension of the
3 m ³ /day	Domestic	Lumbrifilter + Daphniafilter + UV	EKO	Lumbrifilter: 6 m ³ Daphniafilter: 3 m ³

Figure 6: Integration of the EKO demosite

Table 20: Timeline of the EKO demosite preparatory and installation works:

Crt. No.	Action	Date	
1	Specific technical design –Sinop demo-site layout	August 2018	
2	Approval for the installation of the UV system in Sinop	October 2018	
3	Tanks design validation	February 2019	
4	Shipment of tanks (lumbrifilter and daphnifilter) and MCU March-April		
	from Italy to Sinop	2019	
5	Shipment of UV lamp from the Netherlands to Sinop	amp from the Netherlands to Sinop May 2019	
6	Delivery of UV lamp to EKODENGE	10 th May 2019	
7	Tanks delivery	24 th of March	
		2019	
8	Installation lumbrifilter, daphnifilter, MCU and UV lamp	lamp June 2019	
9	Start-up of the system	9 th of July	

Table 21: Description of the EKO demosite:

Altitude:	Yearly average temperature °c:	Max/min temperature °c	Annual rainfall
0 m	14 °C	+ 22°C / + 6°C	668 mm

The demosite has been built in Sinop located in the northern part of Turkey in the Black Sea Region. It has a population of 200,000 people living in city center and nearby villages. Almost 90% of the population have access to centralised sewage system but the rest of 10% are using septic tanks as the main form of sanitation.

Photo 9: Context view of the demosite, view of the housing

BENEFICIARIES: The INNOQUA system treat the wastewater from residential complex with 8 detached houses and a social building. A residential site is hosting approximately 55 people.

Quality Parameter	Influent quality	Discharge limits *	
		mg/L	
TSS	220	30	
BOD5	220	30	

Table 22: Influent quality and treatment target of the EKO demosite:

* According to the Article 28 of the Regulation on Water Pollution Control (Su Kirlilği Kontrolü Yönetmeliği 31.12.2004 Official Gazette No: 25687)

SPECIFIC SCIENTIFIC RESEARCH OBJECTIVES: To assess the potential for the INNOQUA technology to be implemented on residential housings.

Photo 10: The Innoqua system on EKO demosite

CONFIGURATION: In Turkey the INNOQUA system consists of a lumbrifilter, daphniafilter and a UV unit installed.

LOCATION: Lalaköy Köyü, Sahilkent Mahallesi Doktorlar sitesi, Sinop Turkey

3.6 Romania – ECOIND

Table 23: Key parameters of the ECOIND demosite

Design	Source of	Technology	Partner responsible	Dimension of the
capacity	wastewater			system
2.4 m³/day	Domestic (Touristic building+Offices)	Lumbrifilter + Daphniafilter	ECO +RMC	Lumbrifilter: 6 m ³ Daphniafilter: 3 m ³

Figure 7: Integration of the ECOIND demosite

	Table 24:	Timeline of th	e EKO	demosite	preparatory	y and installation	works:
--	-----------	----------------	-------	----------	-------------	--------------------	--------

Crt. No.	Action	Details
1.	Specific technical design – Romanian demo-site layout	September 2019
2.	Preparatory works	February-March (influent line – pipes; platform for biofilter room)
3.	Tanks design validation	October
4.	Tanks manufacturing	20 th of February
5.	Tanks delivery on-site	26 th of February
6.	Technical project for construction authorization	December 2019
7.	Authorization	February 2019
8.	Installation	March-April 2019
9.	Start-up	April 2019

Table 25: Description of the ECOIND demosite:

Altitude	Yearly average temperature °c	Max/min temperature °c	Annual rainfall
407 m	7.9 °C	+ 25°C / -25°C	600 mm

The Romanian demo-site aims to demonstrate the long-term performance and suitability of decentralised wastewater treatment in real operational conditions in extreme weather conditions (-25 to +25 $^{\circ}$ C).

Almost half of Romanian population lives in rural areas while only 10% of this population is connected to centralized wastewater collection and treatment systems – the remainder use or could use decentralized approaches. Moreover, agro-touristic/rural tourism has blossom during the last years creating also a potential niche market for decentralized wastewater treatment solutions.

Photo 11: Context view of the demosite, the touristic building in winter and summer

Due to high temperature variation, usual installation of decentralised wastewater treatment plants in Romania are either underground either in an underground/aboveground technical room. To keep the possibility of dissemination to larger audience and showcasing, the Innoqua system has been installed in an insulated biofilter room

Photo 12: The Innoqua system on RMC + ECOIND demosite

BENEFICIARIES:

The INNOQUA system will treat the wastewater from a touristic building (kitchen, toilets and showers) with 10 rooms, a restaurant (max. 80–100 places) and a conference hall (max. 40 places). The treated wastewater is discharged into nearby river

CONFIGURATION: Presettler - Lumbrifilter + Daphniafilter + MCU

Table 26: Influent quality and treatment target of the ECOIND demosite:

Quality Parameter	Influent quality	Discharge limits *	Minimum removal*
		%	
TSS	100±25	60	70
COD	650±200	125	75
BOD5	280±80	25	70
N-NH4 ⁺	32±5	3	-
N-NO ₃ -	<0.01	8	-
Total N	58±5	15	70
Total P	4.5±1	2	80

* According to Romanian National Regulations for WWTPs <2000 p.e.

SPECIFIC SCIENTIFIC RESEARCH OBJECTIVES:

To assess the potential for Eastern European less deserved areas to transition towards sustainability, through the use of a robust, cold climate resilient and affordable wastewater treatment solution.

LOCATION : Ilisesti 788, Suceava, Romania

3.7 Ecuador - GYA

Table 27: Key parameters of the GYA demosite

Design	Source of	Technology	Partner responsible	Dimension of the
capacity	wastewater			system
2 m ³ /day	Domestic	Lumbrifilter + Daphniafilter	GYA - UCU	Lumbrifilter: 1.5 m ³ Daphniafilter: 2 m ³

Figure 8: Integration of the GYA demosite

Table 28: Timeline of the GYA demosite preparatory and installation works:

Crt. No.	Action	Date
1	Preparation works 1 for the site of Quito: separation of the rainwater and wastewater collection system in the pilot site	April 2017
2	Pilot site description: effluent requirements and technologies	April 2018
3	Implementation plans	July 2018
4	Tanks design validation and detailed implementation plan	November 2018
5	Detailed budget planning (pumps, measurement equipment, monitoring process, etc.) and organization of the public tender processes	January 2019
6	Preparation works 2: removal of the garden, digging of the implantation, concrete slab and walls, plumbing and electricity connections	January-March 2019
8	Tank delivery in Guayaquil (Ecuadorian customs)	6th of April 2019
9	Delivery of the MCU; solutioning of some connection's issues	April 2019
10	Delivery of the equipment (settlement tanks, pumps, etc.)	June 2019
11	Delivery of the tanks in Quito	End of June 2019
12	Start-up of the system	June 2019

Table 29: Description of the GYA demosite:

Altitude	Yearly average temperature °c	Max/min temperature °c	Annual rainfall
2832 m	13.9 °C	+ 14.1°C / +13.6°C	1273 mm

The demosite has been implemented in the city of Quito, the capital of Ecuador. It is located on the equator in the Andean region at 2800 m in altitude. It has a population of 2,6 Million people. Whereas the city is well covered with the municipal sewage network, more than 97% of the wastewater does not receive any treatment and is rejected, together with the rain water, in the local rivers.

BENEFICIARIES: The INNOQUA system treat the wastewater from a multifamily house located in the Miraflores district in the centre of the city. This building hosts 10 persons in 3 apartments and an office.

Photo 13: Context view of the demosite, the multifamily house

Quality Parameter	Influent quality	Discharge limits *	Minimum removal*
		%	
TSS	241	100	
COD	701	250	
BOD5	418	100	
N-NH4⁺	93	-	

*Texto unificado de legislacion secundaria del Ministerio del Ambiente (TULSMA, 2015)- Libro VI, Anexo 1: Norma de calidad Ambiental y de descargua de efluentes - recurso agua: - discharge limits into freshwater

SPECIFIC SCIENTIFIC RESEARCH OBJECTIVES

To assess the potential for the INNOQUA technology to be implemented in Latin America but also to challenge the potential integration of the INNOQUA system in dense urban area.

Photo 14: The Innoqua demosite on GYA + UCU demosite

CONFIGURATION: In Quito the INNOQUA system consists of a lumbrifilter and a daphniafilter installed on the outflow from a settlement tank.

LOCATION: Armero OE7-261 y El Oro Quito - 170521 Ecuador

3.8 Peru – UCSM

Table 31: Key parameters of the UCSM demosite

Figure 9: Integration of the UCSM demosite

Table 32: Timeline of the UCSM demosite preparatory and installation works:

Crt. No.	Action	Details
1.	First Specific technical design –Peruvian demo-site layout	August 2018
2.	Tanks design validation	December 2018
3.	Installation (civil engineering works)	May – June 2019
4.	LF and DF tanks delivery/arrival	20 th of April 2019
5.	MCU delivery/arrival	14 th of May 2019
6.	Final Specific technical design –Peruvian demo-site layout	July 2019
7.	Installation (reconfiguration/expansion according to suggestions)	July – August 2019
8.	UV delivery/arrival	30 th of July 2019
9.	MCU start-up for configuration	6 th of August 2019
10.	Start-up	September 2019

Table 33: Description of the UCSM demosite:

Altitude:	Yearly average temperature °c:	Max/min temperature °c	Annual rainfall
2348 m	14.5 °C	+ 15.3°C / + 13.2°C	75 mm

This demosite is installed in the city of Arequipa, located in the south region of Peru. It has a population of slightly more than one million people. Nearly 5% of the population lack access to water and 15% lack access to sanitation.

Photo 15 Context view of the demosite, the university entrance

BENEFICIARIES: The INNOQUA system treat the wastewater from Fundo Huasacache (one of the Campus of UCSM). This campus, with an area of 2000 m², is composed of classrooms, laboratories, greenhouses, sports and recreational spaces, and a small food court. It hosts approximately 350 students and 25 personnel each year.

All the waste water produced here – lacking proper treatment – ended up filtrating into the Socabaya river, located just outside the campus.

Quality Parameter	Influent quality	Discharge limits	Minimum removal*	Reuse limits**
		mg/L	%	mg/L
TSS	190	150		
COD	800	200		40
BOD5	460	100		15
N-NO ₃ -	18.5			
Total N	180.01			100
Total P	10.8			
E. Coli				1000/100mL

Table 34: Influent quality and treatment target of the UCSM demosite:

** According to Aprueba Límites Máximos Permisibles para los efluentes de Plantas de Tratamiento de Aguas Residuales Domésticas o MunicipalesDECRETO SUPREMON^o 003-2010-MINAM

** According to Aprueban Estándares de Calidad Ambiental (ECA) para Agua y establecen Disposiciones Complementarias - Decreto Supremo - N° 004-2017-MINAM

SPECIFIC SCIENTIFIC RESEARCH OBJECTIVES

To assess the potential for the INNOQUA technology to be implemented on a university campus where the water will be fully reuse for agricultural purpose and class.

Photo 16: The Innoqua system on UCSM demosite

CONFIGURATION: In Peru the INNOQUA system consists of a lumbrifilter (LF), a daphniafilter (DF), a BioSolar Purification System (BSP) and a UV system (UV) installed on the outflow from a septic tank. Different configurations are tested simultaneously: LF+DF+UV and LF+BSP.

LOCATION: Fundo La Banda s/n (Vía Paisajista), Jacobo Hunter Arequipa - 04001 Peru

3.9 Tanzania – BORDA

Table 35: Key parameters of the BORDA demosite

Table 36: Timeline of the BORDA demosite preparatory and installation works:

Crt. No.	Action	Date
1	Specific technical design – Tanzanian demo-site layout	August 2018
2	Approval for the installation of the UV system in Mlalakuwa	December 2018
3	Tanks design validation	February 2019
4	Shipment of tanks (lumbrifilter and daphnifilter) from Italy to Tanzania	February 2019
5	Shipment of UV lamp from the Netherlands to Tanzania	March 2019
6	Site clearance and construction works in Tanzanian demosite	March 2019
7	Delivery of UV lamp to BORDA Tanzania	April 2019
8	Arrival of the tanks to Dar es Salaam, Tanzania	2 nd of May 2019
9	Tanks delivery	24 th of May 2019
10	Installation lumbrifilter, daphnifilter, MCU and UV lamp	June - July 2019
11	Innoculation of lumbrifilter (15kg of earthworms) and start-up of the system	19 th of July

Table 37: Description of the BORDA demosite:

Altitude:	Yearly average temperature °c:	Max/min temperature °c	Annual rainfall
16 m	25.9 °C	+ 27.9°C / + 23.8°C	1089 mm

This demosite is installed in the Mlalakuwa sub-ward located in the eastern part of Dar es Salaam. It has a population of 19,000 people living in approximately 1,000 households. Nearly 80% of the population use pit latrines (35%) and septic tanks (45%) as the main form of sanitation. Most of these facilities are emptied using illegal or unsafe practices, such as manual emptying with a bucket, "flooding out" or direct discharge to nearby water sources.

Photo 17: Context view of the demosite, one of the five household

BENEFICIARIES: The INNOQUA system will treat the wastewater from five households and will benefit 37 people from a middle and low-income community. The treated wastewater will be used for irrigation of an existing banana plantation.

CONFIGURATION: In Tanzania the INNOQUA system consists of a lumbrifilter, daphniafilter and UV lamp, installed on the outflow from a septic tank. The treated water is used for irrigation in a banana plantation.

Table 38: Influent quality and treatment target of the BORDA demosite:

Quality Parameter	Influent quality	Discharge limits *	Minimum removal for discharge*	Reuse limit**
	m	ıg/L	%	mg/L
TSS	95±15	100	70	
COD	511±10	60	75	
BOD5		30		
N-NH4 ⁺	79±0		-	

*According to Water Resources Management Act, 2009

SPECIFIC SCIENTIFIC RESEARCH OBJECTIVES: To assess the potential for Tanzania's sanitation sector to transition towards sustainability, through the integration of innovative decentralised sanitation systems with safe re-use of treated wastewater.

Photo 18: The Innoqua system on BORDA - Tanzania demosite

LOCATION: Mlalakuwa sub-ward Kinondoni district (Close to JW military base and Mwenge market) Dar es Salaam, Tanzania

3.10 India – BORDA

Table 39: Key parameters of the BORDA demosite

Design capacity	Source of wastewater	Technology	Partner responsible	Dimension of the system
1.5 m³/day	Domestic	Lumbrifilter + Daphniafilter + UV + BSP	BORDA	Lumbrifilter: 6 m ³ Daphniafilter: 1.1 m ³

Figure 11: Integration of the BORDA demosite

Table 40: Timeline of the BORDA demosite preparatory and installation works:

Crt. No.	Action	Details
1.	Specific technical design	September 2018
2.	Tanks design evaluation and validation	November 2018
3.	Technical project for construction authorization – interactions with community officers	November 2018
6.	System configuration, adaptation site design (UV system added)	December 2018
7.	Tanks delivery, Lumbrifilter and Daphniafilter	End of December 2018
10.	MCU delivery	January 2019
11.	UV lamp delivery	February 2019
12.	Installation of UV lamp, UV pumping tank	February 2019
14.	Electrical installation LF, DF and UV	May 2019
15.	Start-up of Lumbrifilter and Daphniafilter	April 2019
17.	BSP installation	Early September 2019
19.	BSP start up	September 2019

Table 41: Description of the BORDA demosite:

Altitude:	Yearly average temperature °c:	Max/min temperature °c	Annual rainfall
934 m	23.6 °C	+ 27.1°C / + 20.7°C	831 mm

This demosite is running in the Beedi Workers Colony is located in the south-western part of Bangalore, India. With a rapid urbanization and a growing population, water scarcity is becoming a major concern all over India and requires innovative and integrated approaches. The involved community is composed of more than 150 households with 5 persons per household on an average. Half of the community is connected to a decentralized wastewater treatment DEWATS, while the connection to a main sewerage system infrastructure is undergoing now.

Photo 19: Context view of the demosite, the community.

BENEFICIARIES: The INNOQUA system will treat the wastewater from ten households and will benefit people from a low-income community. The treated wastewater will be used for irrigating a community garden. With a high malnutrition observed amongst children in the community, the garden should provide vegetables and fruits to the nearby school to improve the diet of local children.

Quality Parameter	Influent quality	Discharge limits *	Minimum removal*	Reuse limit **
	I	mg/L	%	
TSS	3595±20	20		
COD	3193±13	50		
BOD5	1050±50	10		≤ 10
E. Coli		<100		None

*According to the Government of India, Ministry of Urban Development, National Urban Sanitation Policy, 2008, 34

** According to the Karnataka State Pollution Control Board, November 16, 2007.

SPECIFIC SCIENTIFIC RESEARCH OBJECTIVE

Sustainability transition in the wastewater sector and new alternative sanitation systems is this area where sanitation is a huge problem. A system able to provide treated water available for reuse using low energy and with low maintenance is required.

Photo 20 The Innoqua system on BORDA- India demosite

CONFIGURATION: In India the system includes a presettler, lumbrifilter as the first and secondary treatment stage, a daphniafilter and as tertiary treatment stages a biosolar purification or a UV lamp for final disinfection.

LOCATION: Beedi Workers Colony, BSM Extension, Kengeri Satellite Town, Kommaghatta, Bangalore 560060, India

3.11 France – Lombritek

Table 43: Key parameters of the LBT demosite

Design capacity	Source of wastewater	Technology	Partner responsible
60m ³ /year (agro- industrial sludge)	Waste from fish farming	Lumbricomposting	LBT

Table 44: Timeline of the LBT demosite preparatory and installation works:

Crt. No.	Action	Details
1	Letter of support for the Innoqua project, signed by the Director of	November
	Canourgue	2017
2	Partnership agreement between LombriTek association and EPLEFPA, in the framework of the INNOQUA project	January 2018
3	Agreement between LombriTek and EPLEFPA to present a complementary local financing file for major works	February 2018
4	Application for the Certificate of Urbanism at the Town Hall of La Canourgue	February 2018
5	Certificate of urbanism granted by the town hall of La Canourgue	April 2018
6	Deposit of the project to the local financiers for obtaining the	November
	necessary subsidies to the project for the big works	2018
7	License agreement to build the town of La Canourgue, after	February 2019
	favourable opinion of the Departmental Unit of Architecture and Heritage	
8	Grants granted by local funders (Occitan Region, Adour-Garonne Water Agency, Lozère Department, SDEE)	April 2019
9	Phase-1 Works: earthworks, concrete slab, low wall, metal shelter,	July 2019
	stainless steel grating and installation of electrical cabling	
10	Phase-2: Earthworks and installation of the concrete slab	July 2019
11	Phase-2: Construction of the lumbricomposting shed	August 2019
12	Phase-1: Installation of equipment	August 2019
13	Start of extraction of liquid sludge, filling of 4 containers (2m ²) and thickening with untreated wood chips + green waste	August 2019

Table 45: Description of the LBT demosite:

Altitude	Yearly average temperature °c	Max/min temperature °c	Annual rainfall
556 m	7.9 °C	+ 20°C / + 5°C	697 mm

This demosite is implemented in La Canourgue, a French commune, located in the department of Lozere in region Occitania. The town is crossed by canals and has preserved a historic center consisting of narrow streets and historic buildings. It has a population of 2,100 people. Geographical location of the site, 160 km north of Montpellier (south of France).

Photo 21: Context view of the demosite

BENEFICIARIES: Agricultural high school Louis Pasteur

Table 46: Sludge quality and treatment target of the LBT demosite:

Quality Parameter	Influent quality	Minimum removal for organic compost	
	%	labellisation	
Organic matter (OM)	508	>= 25% MB	
Total Organic Carbon	832		
Total Nitrogen Kjeldahl	86,40	< 3% MB	
Ammoniacal Nitrogen	17,10	-	
Total Phosphorous	114,00	< 3% MB	
Total Calcium	562,00	70	

Total Magnesium	22,00	80
Total Potassium	9,39	< 3% MB
Total Sodium	2,88	

*According to Norme NF U 44-051: Amendements organiques - Dénominations spécifications et marquage.

Photo 22: Lumbricomposting unit during one of our demosite visit

CONFIGURATION: The sludge treatment system in two phases: in the first phase, a pumping, thickening and mixing of sludge with green waste occurs. The second step is composed of a fermentation (2 weeks), ripening process (10 weeks) and recovery of lumbricompost.

SPECIFIC SCIENTIFIC RESEARCH OBJECTIVES: Installation in France of a first demosite for the treatment of waste from fish farming and aquaponics, on a site with a national and international influence.

LOCATION: Ferme Aquacole de la Source du Frézal LEGTA Louis Pasteur Chemin Fraissinet 48500 La Canourgue FRANCE

4 Conclusion

The deliverable D5.1 provides an overview of the installed demonstration sites. Despite the unfavourable circumstances (industrial partner withdrawal, BSP technology provider bankruptcy, etc), the consortium struggled to decrease as much as possible the delay of the installation works and the impact on the demonstration strategy as it has been described in the DoA, all of the demo-sites are installed, operational and under strict monitoring (see sampling and monitoring protocol in D.4.3.).

The deliverable was not intended and does not provide any treatment efficiency/ performance results of the INNOQUA systems installed. All the demonstration site are monitored through a common sampling and analysis protocol and the results will be presented in a global syntax document which is the D5.2 "Final monitoring report and assessment of each pilot site"; document which will include all water analysis and other technical parameters gathered during the whole demonstration phase.