Decentralised Nature Based Wastewater Treatment Systems: The Role of Urine Separation Pedestals

International Virtual Conference – Earthworms, water fleas and algae: the future of wastewater treatment?

17 November 2020

Chris Buckley

17nd November 2020

Pollution Research Group University of KwaZulu-Natal Durban South Africa

buckley@ukzn.ac.za http://prg.ukzn.ac.za/

Topic

- Humans and environmental pollution
- Wastewater Treatment
- Circular Economy
- Urine Resources
- Separation
- Impacts

Planetary Boundaries

Reactive Nitrogen Pollution:

- Drinking water quality
- Air quality
- Eutrophication
- Hypoxia
- Climate change

Sources:

- Agriculture
- Industry
- Going to the bathroom

History of Wastewater Treatment

Sett ellise and Relise History of Wastewater Treatment Activated Sludge 1950 Organic Matter 1960 Degradation **Nitrifica** Fe Al 1970 P Precipitation Nitrification 1980 Denitrification 2010 El Conts Adsorption/oxidation

No Electricity, Passive Treatment, low skills, Irrigation

Bananas and Taro

Hydroponics

VFCW Performance (Oct-Nov 2017)

Table 1: VFCW performance data after modifications

•				
	Inlet (Siphon Chamber)	Effluent	Discharge limit	% Removal
CODt (mg/l)	276.6 (± 4.8)	73 (± 1.8)	75	73.6
NH ₄ -N (mg/l)	57.7 (± 0.9)	21.5 (± 0.5)	6	62.7
NO ₂ -N (mg/l)	0.5 (± 0.0)	0.6 (± 0.0)		
NO ₃ -N (mg/l)	0.3 (± 0.1)	15.6 (± 0.3)	15*	
PO ₄ -P (mg/l)	18.2 (± 0.2)	5.4 (± 0.1)	10	70.3
TSS (mg/l)	82 (± 2.0)	34.7 (± 2.2)	25	57.7
рН	7.2-7.4	6.7-7.3	5.5-9.5	
EC (mS/m)	93.2 (± 0.8)	77.2 (± 0.8)	70 mS/m above intake up to a max of 150 mS/m	
DO (mg/l)	1.4 (± 0.1)	3.6 (± 0.1)		
Alkalinity (mmol/l)	7 (± 0.2)	2.7 (± 0.1)		61.4

^{*} VFCWs are nitrifying beds

High Nutrient Loads and Nature Based Systems

- Nature based systems scale with volume
- Factor 10 water reduction pedestals
 - reduced water demand
 - reduced volume of contaminated wastewater
 - reduced area for nature based system
- Separate urine from faeces
 - remove the nutrients from nature based systems
 - potential for nutrient reuse

Linear vs the Circular Economy

Nutrients in Wastewater Faeces Urine & **N** – Nitrogen **P** – Phosphorus **K** – Potassium **S** – Sulphur **B** – Boron Ca – Calcium Mg - Magnesium **Fe** – Iron Pharmaceutical Residues in Wastewater Diverse Substances

Urine trap

by: E00S

Patent pending

"A breakthrough technology for urine diversion in flushing toilets"

EOOS Laufen Pedestal (€ 1,500.00)

Scenario concentrations

Scenario		Ammonia mg N/L		Nitrate mg N/L		Phosphate mg P/L	
Wetland	UD	Min	Max	Min	Max	Min	Max
No	No	40.0	80.0	-	-	4.0	12.0
Yes	No	-	-	16.0	32.0	4.0	12.0
No	Yes	16.5	33.0	-	-	2.3	6.8
Yes	Yes	-	-	6.6	13.2	2.3	6.8
Discharge limits		6.0		15.0		10.0	

UD + wetlands are required to meet standard.

Separated urine mustbe dealt with separately $(1.5 - 3.5 \text{ m}^3/\text{d})$.

What to do with urine?

- Direct agricultural reuse
 - urban agriculture
- Nitrification and concentration

Direct Urine on Lime

Results - Mass Balance at 35 °C

Dose - Drying Technology

Partnership / References

https://richearthinstitute.org/

- Senecal, J (2020) Safe Nutrient Recovery from Human Urine System and Hygiene Evaluation of Alkaline Urine Dehydration, Doctoral thesis, Swedish University of Agricultural Sciences, Uppsala. ISBN (electronic version) 978-91-7760-585-0
- Etter, B and Udert, K (2018) Nutrient and water Recovery from urine: A technology takes off. Joint Agrospace – MELiSSA Workshop, Rome, 16-18 May 2018
- https://youtu.be/GXDjxfWSfnU
- https://www.youtube.com/watch?v=e8z5rlvJvs&a=voutu.be
- http://www.urinetrap.com/
- http://www.eoos.com/cms/?id=413

