

INNOQUA LUMBRIFILTER TECHNOLOGY DEMONSTRATION SITE OVERVIEW

Eoghan Clifford NUI Galway (Ireland) (on behalf of the consortium who carried out the work!)

17th November 2020

Introduction

Prototype Site Implementation

2 x Controlled Demonstration Sites: National University of Ireland, Galway, University of Girona, Spain.

Prototype Optimizations

- ✓ Reduced Active Layer Hgt
- ✓ Simplified Dosing System
- ✓ Stress Testing
- ✓ Integration
- ✓ Validate Local Material Species

Demonstration Applications

INNOQUA

- ✓ Agriculture
- ✓ Residential
- ✓ Commercial Office
- ✓ Educational Buildings
- ✓ Tourism Buildings
- ✓ Aquaculture

representing a variety of applications

The Challenge – Diverse Influent Characteristics

Selected wastewater characteristics for the demonstration sites (on a mg / L basis, unless otherwise specified)

Country	Flow Volume (m³/day)	рН	Suspended Solids	COD	BOD ₅	Ammonium (as N)	Total Nitrogen (as N)	Total Phosphorus (as P)
Ireland 1	0.2	7.5	5483	8148	6000	57.6	252	-
Ireland 2	1.4	7.8	115	601	375	33	51	9
France	0.6	7.5	609	1313	495	164	-	-
Italy	0.5	7.1	325	1016	380	161	145	13
Scotland	2.00	-	68	335	147	32	-	-
Turkey	1.50	7.5	595	772	261	53.8	-	7
Romania	2.40	-	324	857	395	36.7	103	8
Ecuador	2.00	7.2	164	506	298	62	-	-
Peru	2.5	8.2	134	872	511	180	-	-
Tanzania	1.40	-	95	511	-	78	-	-
India	1.2	7.5	2644	2036	1217	117	-	-

The Challenge – Varying Effluent Quality Requirements

Country	рН	Temperature (°C)	Suspended Solids	COD	BOD ₅	Total nitrogen	Total phosphorus	
Ireland*	-	-	-	-	-	-	-	
UK	8	20	35	125	25	25	-	
Romania	7.5	35	60	125	25	15	2	%removal efficiency in
Italy	8	-	25	100	20	15	2	some countries
France	-	-	25	-	35	-	-	varying between
Turkey	9	-	30	-	30	-	-	70-85% for
Ecuador	-	-	100	250	100	-	-	TSS/COD/N removal
Peru	8.5	+-3*	-	40	15	-	-	
Tanzania	8	20-35	100	60	30	35	6	
India	9.5	+5**	20	50	10	10	1	

Selected treated effluent limits, where discharged to surface water body (on a mg / L basis if not stated otherwise)

*Under the Nitrates Regulations farmers must not apply more than 170 kgs of nitrogen from livestock manure per ha per year (with some additional caveats).

The Challenge – Diverse Climatic Conditions

Country	Min Temp (observed) (^o C)	Max Temp (observed) (^o C)	Annual Rainfall (mm)	Maximum Rainfall in Wettest Month (mm)
Ireland	-7.9	25.6	1,400	350 (Dec/Jan)
Spain	5	26	737	110 (Oct)
Ireland-Agri	-7.9	25.6	1,400	350 (Dec/Jan)
France	-0.5	26.6	697	73 (May)
Italy	0.3	37	697	73 (Oct)
France-NBK	5	27	1,200	120 (Nov)
Scotland	-10	25	750	76 (Oct)
Turkey	-24	41	669	89 (Oct)
Romania	-30	32	600	100 (June)
Ecuador	9	21	1,013	149 (Apr)
Peru	5	27	95	40 (Feb)
Tanzania	18	32	1,145	270 (April)
India	20	38	839	241 (Sept)

Lumbrifilter (Ireland & Ecuador)

Ireland (Craughwell) – agricultural demo-site

Ecuador (Quito) – domestic

Challenge: Space! _

		Inlet (mg/L)	Outlet LBF (mg/L)	Removal efficiency (%)	
	TSS	1,483	469	63	Challenge:
Dairy washwater -	COD	6,378	2,587	44	- Very high
$0.2 \text{ m}^3/\text{day}$	BOD	3,457	1,278	28	strength wastewater
7 5	NH4-N	60	12	77	
	рН	7.5	8	-	

	-	Removal rate (%)					
		BOD_5	COD	TSS	NH ₄ -N		
Domestic	Average	53.5	60.5	63.9	26.9		
washwater - 0.4 m³/day. 0.75 m	Standard deviation	±29.0	±19.9	±22.6	±26.6		
active layer	Median	64	68	72	25		

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 689817.

Lumbrifilter + UV system (Italy - Vasto)

SETTLEMENT TANK

RETENTION TANK UV PURIFICATION

LUMBRIFILTER

		Removal rate (%)								
	BOD ₅	COD	TSS	TN	NH ₄ -N	TP	Turbidity			
Average	96.1	84.3	89.8	49.2	92.5	9.2	92.4			
Standard deviation	±3.1	±13.7	±9 . 7	±28.7	±7 . 0	±45.4	±7.0			
Median	97.2	89.9	93.3	56.8	94.2	18.7	95.3			

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 689817.

Domestic washwater - $0.4 \text{ m}^3/\text{day}$.

Challenge:

- Align with construction project
- Lower than expected hydraulic loading

Lumbrifilter +DF (France - Anglet)

DAPHNIAFILTER

Challenge:

 Experimentation with preliminary & primary treatment

INNOQUA

LUMBRIFILTER

SEPTIC TANK

Office wastewater - $0.6 \text{ m}^3/\text{day}$.

			_							
		Removal rate (%)								
	TSS	BOD ₅	COD	NH ₄ -N	ТР	PO ₄ -P	Turbidity			
Average	78.0	89.5	70.8	72.3	36.7	25.3	77.9			
Standard deviation	±21.8	±8.9	±20.9	±16.3	±18.7	± 12.5	±16.3			
Median	88.7	92.6	76.4	78.3	40.0	23.0	82.5			

Romania demo-site - Ilişeşti

Considerations:

- Change of use of building from tourist residence to business
- Low winter temperatures


	Removal rate (%)									
	TSS	BOD ₅	COD	NH ₄ -N	TP	PO ₄ -P	Turbidity	TN		
Average	64.1	77.2	70.9	66.0	35.8	25.4	73.4	55.4		
Standard deviation	±20.5	±15.2	±13.9	±18.5	±15.9	±15.6	±14.9	±20.4		
Median	69.3	83.4	73.1	70.2	32.9	23.1	78.3	61.9		

Lumbrifilter +DF +UV system (Turkey - Sinop)

Considerations:

- Single extreme rainfall event
- Low biological load

Domestic wastewater $- 1.3 \text{ m}^3/\text{day}$. - Lo

DAPHNIAFILTER

Lower than expected hydraulic loading

	Removal rate (%)								
	TSS	BOD ₅	COD	NH ₄ -N	ТР	Turbidity			
Average	39.5	37.6	33.7	63.7	39.1	49.7			
Standard	±32.6	±27.0	±28.7	±23.1	±22.4	±25.9			
deviation	132.0	127.0	120.7	123.1	122.4	125.9			
Median	42.8	35.0	32.7	63.5	40.9	51.4			

UF PURIFICATION

EQUALISATION TANK

=

LUMBRIFILTER

Lumbrifilter +DF +UV system (Tanzania Mlalakuwa)

Domestic wastewater $- 1.4 - 3.7 \text{ m}^3/\text{day}$.

		% removal							
	TSS	Turbidity	COD	NH ₄ -N	TP	PO ₄ -P	TN		
Average	25.0	74.9	64.0	65.4	35.7	19.1	36.5		
Standard deviation	±20.4	±16.6	±18.9	±32.0	±13.8	±17.5	±23.8		
Median	29.2	77.0	71.5	80.0	34.3	20.0	33.0		

Considerations:

- Local custom/policy in terms of dealing with complaints/public
- Intermittent electricity supply
- Initial load to the system

Lumbrifilter +DF +UV system

SETLEMENT TANK LUMBRIFILTER RETENTION TANK DAPHNIAFILTER RETENTION TANK UV PURIFICATION BIOSOLAR PURIFICATION Image: Participation of the participat

Domestic wastewater – $0.99 \text{ m}^3/\text{day}$.

Demo-site	INDIA

Considerations:

- High temperature
- Intermittent electricity supply
- Erratic loading

	% Removal rate									
	TSS	TSS BOD ₅ COD NH ₄ -N								
Average	80.8	89.4	79.1	82.4						
Standard deviation	±20.8	±10.0	±15.1	±11.2						
Median	88.0	92.8	82.7	84.6						

Lumbrifilter +DF +UV system

- (Peru - Arequipa)

University campus building– 1.3 m³/day.

Challenge:

- High temperatures coincided with low season/campus closure

	Removal rate (%)							
	TSS	BOD ₅	COD	NH ₄ -N	TP	PO ₄ -P	Turbidity	TN
Average	73.2	77.7	42.2	73.1	20.6	12.1	81.8	44.3
Standard deviation	±32.8	±19.43	±22.	±20.4	±13.4	±11.2	±16.1	±22.7
Median	88.9	86.4	46.4	77.8	20.7	7.3	88.5	40.2

Other sites

KEY COMMENTS & LESSONS (AMONGST OTHERS)

- Good organic and solids loading rate design is key
- Worm densities (5000/m³ (mature worms upwards)
- Coordination, planning & customs!!
- Active layer of 1000 mm used (but keep topped up below 700 750 mm potential performance degradation)
- **Intermittent loading** at each site (e.g. 1 dose per hour)
- **Primary settlement** used in almost all sites
- Energy costs measured for most sites*
- **Temperature** generally not an issue on any site
- **Maintenance** occasional raking of the top surface; Occasional top-up of woodchip has been required in the Lumbrifilter—perhaps 100 mm over 4–6 months. No further maintenance was required.
- Locally sourced material coconut husk to replace woodchip & pea gravel to replace pozzolana.
- The **Lumbrifilter is very robust** and recovers quickly even when flows have stopped for several weeks— providing the **woodchip remains damp and does not freeze**.
- Where wastewater volumes are low periodically the Lumbrifilter dosing system can be adjusted to maintain a good worm population.

*data available

Thank you for your attention!

www.innoqua-project.eu

fhttps://www.facebook.com/innoqua/

