

Webinar: Earthworms, water fleas and algae: the future of wastewater treatment?

17° of November 2020

1. Aerated wetlands (AEW)

Sizing **AEW**

NO SOIL!!!!

- Aeration system on the bottom
- Possibility to feed both as HF or as VF
- Gravel of selected size, typical height 1.0 m
- waterproofed
- Typically planted with *Phragmites australis*
- Reduction of area requirement up to 4-5 in comparison to conventional solutions

Advantages of AEW in comparison to conventional CW	AEW	Conventional CW
N°1: area requirement	1 m²/pe	3 m²/pe

Sizing **AEW**

NAWAMED application portable AEW for refuge camps: plan

NAWAMED application portable AEW for refuge camps: section

New design in implementation

Forced aeration

Compact Better performances Adaptation to loads variations

To improve ponds effluents

Aerated Rock Filter

2. Green walls

Why greywater recycling?

\Box Greywater (GW):

- > is the portion of household wastewater that excludes toilet flushes (and possibly kitchen sinks);
- > accounts for up to 70% of domestic wastewater (in EU: 100-150 L/day/PE).
- □ **Advantages** of GW separation and treatment:
 - 1. smaller volumes of (more polluted) wastewater are sent to treatment plants;
 - 2. treated GW can be recycled for other uses (e.g., WC flushing, irrigation).

Motivation

□ Green walls:

- Nature-based solutions with multiple benefits (aesthetics, thermal regulation, noise reduction...)
- can be built on unused vertical surfaces (good for urban areas);
- require considerable amounts of water for irrigation;

GREEN WALLS / VERTICAL GARDENS

- Air filtration + O₂ production and CO₂ storage
- Reduced energy costs + positive microclimate effects
- Increased biodiversity
- Reduced noise pollution
- Increased building longevity
- Aesthetics
- Wastewater treatment?

Maharashtra Jeevan Pradhikaran (PUNE) VERTICAL GARDEN FOR GW TREATMENT - experimental setup

Mjp pune results - 2

Removal performances: mean values + (min-max)

	% removal	# of samples
COD	53 (14-86)	12
BOD ₅	54 (15-86)	12
NH ₄ ⁺	52 (21-88)	12
TKN	24 (8-48)	12

- Footprint
 1 m² of greenwall per person about 5-6 m² of external walls for an Indian family
- Costs
 About 600-800 USD for an Indian family (including degreaser, pumps, piping)
- Economically feasible: payback time about 10-12 years

SUPERGREEN

- ☐ The idea of **SUPERGREEN** (SUstainable Purification of greywatER with GREEN walls) project is to test a system for treatment and reuse of greywater in urban areas.
- ☐ The system consists of **vertical green walls** composed of **modular panels** to exploit unused surfaces of buildings.
- ☐ Information on performance of green walls irrigated with GW is still limited

We performed **laboratory tests** at Politecnico di Torino aimed to **quantify the system performance in removing contaminants.**

Laboratory setup

□ Base medium: Different mixes of coconut coir (C) and perlite (P) (Prodanovic et al., 2018) were tested to identify a good compromise between drainage time and specific

TESTED MIXES:

- > 90% C − 10% P
- > 80% C 20% P
- > 70% C 30% P
- > 60% C − 40% P

- □ The introduction of **additional materials** for enhancing treatment was also tested:
 - > compost: 20%
 - > polyacrylate (hydrogel): 20%
 - ➤ biochar: 20%
 - ➤ biochar + polyacrylate: 20% + 20%
 - > activated carbon: 10%

Supergreen Conclusions Airidra

- Our pilot system was tolerant to GW up to HLR=700 L/m²/d (very high, VF CW usually designed for $80 \text{ L/m}^2/d$)
- The best performance was achieved for BOD and E. coli, with removal efficiency close to 100%.
- COD removal was initially lower but increased over time (possibly due to biological effects).
- TN and TP show limited removed, but inflow concentrations were low.
- In view of Italian legislation limit
 - □ COD, BOD5, and TN met
 - E.Coli not met even with very high efficiencies → tertiary disinfection unit (e.g. UV lamp) needed, as usually done for reuse of wastewater treated by NBSs
 - TP peaks could be responsible of not fulfilling of reuse standard → possibility to use high-sorbent material need to be investigated
- COD, BOD5, TN, and TP releases must be properly accounted in the design phase if the proposed BM is used
- Removal efficiency (e.g., COD) may improve by adding biochar (and polyacrylates)

Implementation without insulation

Implementation with insulation

- a Regulating dripline
- **b** growing medium
- c drainage medium
- d water evacuation
- e internal water distribution
- f growing medium
- g water recovery

Rooftop Wetlands

2. Electrified CWs

Microbial Fuel Cells - CWs

inflow

Bioelectrochemically assisted wetland

Esteve-Núñez et al. 2014. Long-term demonstration of a Bioelectrochemically constructed wetland for urban wastewater Treatment. 11th IWA Leading Edge Conference on Water and Wastewater Technologies, 26-30 mayo, Abu Dhabi

Horizontal METlands

Take home messages

- A system with capacity up to 50 p.e. has been operated for two years with results that full-filled the Directive 91/271/EEC for some water reuse applications.
- No energy is consumed. No sludge is produced
- METlands may work under nitrifying conditions
- Enhancing the biodegradation rate by using METlands configurations will lead to reduce the surface requirements of classical CW to ca. 2.5 pe/m² or ca. 0.4m²/pe
- Biodegradation activity can be monitored in situ by measuring the electrical current generated by the electroactive bacteria
- Natural material as highly electroconductive biochar can be used as bed

